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ABSTRACT

In order to be useful, an approximate solution y of a nonlinear system of
equations f(x) = 0 in R" must be close to a solution x. of the system. Two
theorems which can be used computationally to establish the existence of x‘ and
obtain bounds for the error vector vy - x. are the 1948 result of L. V. Kantorovich
and the 1977 interval analytic theorem due to R. E. Moore. The two theorems are
compared on the basis of sensitivity (ability to detect a solution x* close to
y), precision (ability to give sharp error bounds), and computational complexity
(cost). A theoretical comparison shows that the Kantorovich theorem has at best
only a slight edge in sensitivity and precision, while Moore's theorem requires
far less computation to apply, and thus provides the method of choice. This
conclusion is supported by a numerical example, for which available UNIVAC 1108/
1110 software is used to check the hypotheses of both theorems automatically,

given y and f .
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significance and Explanation

This report shows a way to save money in the evaluation of accuracy of approxi-
mate solutions of finite systems of nonlinear algebraic and trancendental equations,
based on the comparison of an older method for this purpose with a newer one. It is
shown that the two methods are theoretically about equally effective, while the newer
one is cheaper computationally. This conclusion has been verified in practice, using
operational UNIVAC 1108/1110 software.

In the case of finite linear systE;;\of equations, there is a simple theory
based on a finite number of arithmetic operations. For linear systems of moderate
size, the successful computation of a vector y==(y1,y2,...,yn) can imply that it
is close to the actual solution x* = (x*,x*,...,x*). For nonlinear systems, the
situation is less well understood in bot% theory and practice, although many numerical
methods are known which will furnish approximate solutions y . The concern here is
not with how y has been found, but rather with the determination of its accuracy as
an approximation to an exact solution x*.

often, x* is defined as the limit of an infinite process, so the computed value
y will be contaminated by both truncation and roundoff error. For y to be useful,
one must be able to assert that it is satisfactorily close to x*. In order of in-
creasing expense, such assertions can be based on simple (but perhaps misguided) faith
in the output of a computer, usually reliable but not truly rigorous heuristic obser-
vations, or the use of theorems which give guaranteed results. The latter degree of
certainty may be required in certain applications, in addition to its intellectual
necessity, and involves proving the existence of x* as well as obtaining error
bounds for the vector y - x*,

Certain criteria are established for theorems which prove existence of solution
vectors and give error bounds. First, they must be computational, so that a computer
program can be written to check out the hypot' eses of the theorem, given y and the
system of equations. Thus, the proof of existence and error bounds will be provided
automatically, or an indication of the reason for failure of the theorem to hold will
be given. A second desirable property is sensitivity; if y is close to a solution,
then the theorem should detect the existence of x* rather than give a negative re-
sult. Also wanted is precision, so that the bounds for y - x* will be as sharp as
possible, to help avoid wasting money by refining an already sufficiently accurate
approximation. Finally, the theorem should be as simple (cheap) to implement as pos-

sible. The computation of y might be expensive, and as little as necessary should
be added to this.

A metric existence theorem suitable for automation was published by L. V.
Kantorovich in 1948. At MRC, software for implementation of this theorem was announced
in 1967, and an improved version was released in 1972. 1In 1977, R. E. Moore published
an interval analytic existence theorem to which this software was readily adaptable,
. as automatic differentiation and interval arithmetic were already implemented in it.
A theoretical camparison of these theorems of different type is achieved by recasting
Moor 's theorem as a metric theorem. It turns out that the Kantorovich theorem has
only a slight edge in sensitivity and precision over this restricted version of the
Moore theorem, but the latter is computationally much simpler and hence preferable.

A numerical example is given to support this conclusion. This example arose in
an unrelated investigation of numerical solution of nonlinear integral equations of
radiative transfer type, and was not constructed for this purpose. The use of Moore's
theorem gave a 4 to 1 advantage in speed, and detected the existence of a solution
which the supposedly more sensitive Kantorovich theorem failed to do.

The responsibility for the wording and views expressed in this descriptive summary ]

lies with MRC, and not with the aui:or of this report.
———




A COMPARISON OF THE EXISTENCE THEOREMS
OF KANTOROVICH AND MOORE

L. B. Rall
Mathematics Research Center
University of Wisconsin - Madison
610 Walnut Street
Madison, Wisconsin 53706

ABSTRACT. In order to be useful, an approximate solution y of a nonlinear

*
system of equations £(x) = 0 in R” must be close to a solution x of the

A

system. Two theorems which can be used computationally to establish the exist-
- ence of x* and obtain bounds for the error vector y - x* are the 1948 result
E | of L. V. Kantorovich and the 1977 interval analytic theorem due to R. E. Moore.
The two theorems are compared on the basis of sensitivity (ability to detect a

*
solution x close to y), precision (ability to give sharp error bounds), and

computational complexity (cost). A theoretical comparison shows that the
Kantorovich theorem has at best only a slight edge in sensitivity and precision,
while Moore's theorem requires far less computation to apply, and thus provides
the method of choice. This conclusion is supportedlby a numerical example, for
which available UNIVAC 1108/1110 software is used to check the hypotheses of

both theorems automatically, given y and € .

1. Nonlinear Systems of Equations. A system of n nonlinear algebraic or

transcendental equations in n real unknowns,

fl(xl,xz,...,xn) =0,

]
o

(1.1) £y (% iXgreoer®)

fn(xl,xz,...,xn) =0

may be represented concisely in the real n-dimensional vector space R' as the
equation
(1.2) f(x) =0,
where f: D ¢ R® »R" is a nonlinear operator from a domain D ¢ R" into R .
The problem of solving the system (1.1) or the equivalent equation (1.2) is, of
course, to find a solution x* = (xI,x;,...,x;) e D which f maps into the
origin 0 = (0,0,...,0) of R" .

In order to keep the discussion of this problem within the realm of prac-
tical computation, it will be assumed that the functions fi(xl,xz,...,xn),

i=1,2,...,n, comprising the components of f(x) can be written as formulas in

FORTRAN or some similar computer language. As software exists for analytic

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.




differentiation of functions of this type [4,9], it will also be assumed without
further ado that the derivatives fij = afi/axj and, if necessary, ;jk =
32§/3xj3xk can be computed automatically, so that, in particular, the evaluation

of the Jacobian matrix
afi(x)
(1.3) f'(x) = L—————-J

presents no difficulty for x € D .

2. Existence theorems and error bounds. Actual computation with one of the many

methods for solving systems of equations will yield an approx{mate sofution vy ,
which will be useful if it can be asserted that y is "close" to a solution x*
of (1.2). This involves establishing (i) the ex{4tence of x* in some region
R. containing y , and (ii) some type of bound for the ewron vector ¢ = x. -y
or its components.

In the case of linear systems Ax = b, verification of existence rests
on a finite number of aritimetic operations. For linear systems of reasonable
size, errors in computed approximate solutions result only from rounding, and
successful execution of a carefully written program can insure the existence of
x. and provide usable error estimates [2]. However, in the nonlinear case, such
assurance of existence may be lacking. Furthermore, even if known to exist, x.
may be defined only as the limit of an infinite process, in which case y will
differ from x. due to truncation as well as roundoff error.

Some common criteria for accepting y as a good approximation to x* are

(i) the nesddual

(2.1) r = f(y)

is small, or (ii) the correction

(2.2) Gk £ x(k+1) it x(k)

is small when calculating x' as the limit of a sequence {x(k)}, in which case
one takes y = x(k+1). Either of these can fail for nonlinear f in R . For
example, if f(x) = e-x , then the residual r can be made arbitrarily small, but
x“ does not exist such that f(x.) = 0 . Similarly, an iteration process x(k+1)

*
(k)) can stall far from x . To see this, apply Newton's method to (1.2) with

f(x) = xm and x(O)

d(x
= 1. The correction 60 can be made as small as desired by
taking m sufficiently large; the value obtained for vy = x(l) will be close to
1 and thus not a good approximation to x' =0 .

It follows that there is a need for computational existence theorems such
that given y and f , their hypotheses can be checked by a computer program,

and error bounds obtained if existence is verified. Other desirable properties
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for such theorems are:

(i) Sensitivity. The region sf in which the theorem can detect the
existence of a solution x. of equation (1.2) is as large as possible.

(ii) Precision. The region s{ in which x. is guaranteed to exist
does not extend far beyond x. , 80 that the error bounds obtained are as good
as possible.

(iii) Simplicity. The additional computation required to guarantee exist-
ence and obtain error bounds should be as inexpensive as possible.

To a certain extent, sensitivity and precision are incampatible, at least in
a single theorem. A sensitive theorem might establish existence of x. in a
large region, but not yield usable error bounds. A result requiring highly pre-
cise approximate solutions, on the other hand, might fail to detect a solution
x. which is close enough to make the accuracy of y satisfactory for the in-
tended purpose. Consequently, some compromise between sensitivity and precision
must be struck. Of course, a computational strategy can be devised in which a
sensitive theorem is used to scout a large region for suitable initial approxima-
tions, which are then refined until a precise theorem guarantees sufficient
accuracy [13].

The purpose of this paper is to compare two camputational existence theorems,
for which UNIVAC 1108/1110 software is operational, on the basis of sensitivity,

precision, and simplicity.

3. The theorems of Rantorovich and Moore. Theorems which can bhe implemented com-

putationally to obtain verifiable conditions for existence of solutions as well as
error bounds include the well=known result on the convergence of Newton's method
due to L. V. Kantorovich [6) and the more recent interval-analytic theorem of
R. E.Moore {12]. RBrief statements of these theorems will now be given; proots
may be found in the literature. In particular, a neat proof of the torm ot the
Kantorovich theorem presented here may be found in the note by Ortega (141,

Let [+l denote a norm for R and also a consistent matrix nom for nwn
real matrices; that is, laxll < IAll «lIxll for all x « k" and square matrices A

of order n with real elements. The ingredients of the Kantorovich theorem ave

3 $l e : )

(1) an dtdal pont (approximate solution) x(\) at which the Jacobian matrix
)

£ ‘?) is invertidble, with

(3.1) nee @ <n

0

and (ii) a Lipschitz constant « for €' such that

t3.2) e Cu) = £ ()l < «llu=vll, Yt 8 .,

afe

e S——




where  is a sufficiently large region containing x(O) . (The meaning of

"sufficiently large" will be made precise below.) From (i), the Newton point

(3.3) 2 . x(O) - [f'(x(O))flf(x(O))
is uniquely defined, and one can find a constant "o such that
(3.4) e - % <

Theorem 3.1 (Kantorovich). If

1
(3.5) hO-Bo Kﬂof_'z" ’
and G(x(O),po) = {x :Hx-x(O)“ < oo} c Q for
1l - v 1-2h
(3.6) o = 9 n
g 0 ho o'

(0)

* -
then there exists a solution x ¢ U(x ,po) of equation (1.2).
The conclusion of this theorem provides a guarantee of the existence of a

L ]
solution x and also the error bound

[ 4
(3.7 " - x <oy
for x(O) as an approximate solution of equation (1.2). Using the Newton point
x(l) instead of x(O) as the approximate solution, one can obtain the sharper
error bound

* (1) 1_hO“ 1-2"'0
(3.8) Ix =x" "Il < N,

- h0 0

as shown by Gragg and Tapia [3]). 1In practice, one may take Q = G(x(O).2n0), as

if x 1is the Lipschitz constant for this region, then ﬁ(x(O)

1
if and only if hg 23 -

Moore's theorem is based on the concepts of interval analysis (11l]. Given

n
.,bn) in R* with a, <b. ,

.po) - ﬁ(x(O),zno) = Q

vectors a = (al,az,...,an) and b = (bl'b2"'

i=1,2,...,n, the interval X = [a,b] in RM is defined to be
(3.9) X = [(a,b] = (x:ai <% < bi' i® Xidyocuitids

The interval extension G of a continuous function g:D ¢ R® = R" may be con-
structed on intervals X ¢ D in the following way: For g(x) = (gl(x), gz(x).---.
gn(x)), take

(3.10) o B min gi(u) , d, = max 91(V)' iw 3,8ssssel 5

i
uex vex

and define G(X) = [c,d). It follows that G(X) o {g(x):x ¢ X} = g(X); however,

G(X) may also contain vectors which are not of the form g(x) for some x ¢ X .

-4-
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The recipe for Moore's theorem [l12] calls for an initial point y , an
interval X containing y , and a nonsingular real matrix Y . These are used

to form the Krawczyk thansgormation
(3.11) K(X) = y = YE(y) + {I-YF'(X) }(X-y)

of the interval X , where I is the identity matrix, and F' denotes the interval
extension of the derivative f' of f .
Theorem 3.2 (Moore). If
(3.12) K(x) ¢ X ,
then there exists a solution x. € K(X) of equation (1.2).

This theorem also provides error bounds in addition to a guarantee oi the
existence of a solution. Setting K(X) = [c,d], one obtains the componcntwise
error bounds

*
(3.13) |xi—yi| < max {lyi-cil.ldi-yil} ' = ] e
for y as an approximate solution of equation (1.2). Error bounds analogous to
(3.8) may be obtained by setting
(3.14) w = y=-Yf(y), [s,t] = {I-YF'(X)}(X-y) ,
from which
(3.15) % -w, | Stms;, i=1,2,....m,

as (x-w) ¢ [s,t] .

Although different in appearance, Theorems 3.1 and 3.2 have a commo nokground.
Define the Newton operaton ¢ by
(3.16) b0 = x - [£'(0) 0
and the Newton sequence {x(k)} by
(3.17) e R L B
Theorem 3.1 gives sufficient conditions for the convergence of the New! - juence
starting from x(O) to a solution x' of equation (1.2). The Krawc:iy. . rator
K defined by (3.11) stems from an adaptation of the Newton operator (3. ' and
the iteration process (3.17) to interval computation [8]. Under the hy»- ' ses

of Theorem 3.2, the operator | defined by
(3.18) Pix) = x - ¥ f(x)
will have a fixed point x" ¢ K(X), which is also a solution of equation (1.2)

by the invertibility of Yy [12].




4. Moore's theorem in R: . Because of the different character of Theorems 3.1

and 3.2, it will be necessary to make some special assumptions in order to compare
them. As the metric topology for intervals (11, pp. 15-24) is closely related to
the norm

(4.1) Ixll = max {|x
& (i)
for R, the method of comparison willbe to reformulate Moore's theorem as a (less

i

general) metric theorem, which will then be compared to the Kantorovich theorem in
kr\‘ . The following concepts will be needed.

The closed ball ﬁ(y,o) in R: with center y and radius ¢ 1is a special
type of interval, namely
(4.2) Uly,0) = {x:llx-yll < p} = [y-pe,y+pel ,
where e = (1,1,...,1). 1In particular, the cfosed unit balf U(0,1) in R: is
simply the interval [-e,e]l. The magnitude of the scalar interval [a,B8] in R
is defined to be
(4.3) | ta, 81| = max{|al.|8]} .

Similarly, for an interval X = [a,b] in Rn "

(4.4) IX| = max {max(|a,|,|b,|)} = max {llall,lIbll} = max lxI
(i) - = xeX

in terms of the norm (4.1). The width of X is

(4.5) w(X) = max {(bi-ai” = |b-all,

(i)

and the mi{dpoint of X is m(X) = %(a+b) . The matrix norm corresponding to (4.1)

for matrices A = (ai.) is

J
n
(4.6) Al = max J |aij|.
(1) j=1
It follows from this and (4.4) that £
(4.7 IAl = |A(-e,e]]. ¢
For a matrix M = ”“ij'eij]) with interval components, one has
n
(4.8) M| = max ) '[u‘j'sijll = max {llAll} = |M[-e,e]]. ;
(1) j=1 - AeM :

i In Theorem 3.2, suppose that B > liYll, n > lly-wll, where w=1y - Y f(y), and

535 SV 4 A,

(4.9) XO = [y - pe, y + pe]l = G(Yop).
The Krawczyk transformation of X is thus

(4.10) x(xp) =w+ p{1 - vp'(xo)}[-e,el .

v AR AR

Also, suppose that

s

S -1- '
’ (4.11) wlp) > |y FrexO)

¥
i




Lemma 4.1. If Bw(p) <1 , then K(xp) c Xp for

n
(4.12) R e

Proof: As I,Y are real matrices, one may write
(4.13) (I-YF' ()} = Y{Y T-F' (X))} .
For v € p{I-YF'(X)}[-e,e]l, (w+v) € K(Xp) , and

(4.14) ly = (ww)ll < lly=wll + llvl < n + Bpw(p),

so that lly = (w+v)ll < p if (4.12) holds, and thus (w+Vv) € Xp :
An interval of the form [-a,al is said to be symmetric.

transformation of a symmetric interval is symmetric, one has

(4.15) {1 - YF'(xp)}[-e,e] = [-c,c],

and thus K(Xo) = [w-pc, wtpc]. The next step in the comparison of Theorems 3.1

and 3.2 will be to use the Lipschitz continuity of f'

function for w(p). If £' is Lipschitz continuous on an interval X (with

Lipschitz constant « ) , then each component fij of £

continuous on X , that is

(4.16) £ ) = £, v} < A, lu=vll , uw,wex.
1j 1) = ]
Define
n
(4.17) A=max ) ),
: i 1]
(i) j=1

It follows that A will be a Lipschitz constant for f£'

assume «k < A .
Lemma 4.2. If y € X , then

(4.18) [£'(y) - F'(x)| < Aly-x].
Proof: By (3.10), (4.4), and (4.1e6),

o3 ' (y) - P!, 2 -} = A, |y-
(4.19) £, = PO <Ay max {ly=xi} = Ay ly=x],

xeX

i,j=1,2,...,n. Inequality (4.18) now follows from (4.8),

QED.

As a linear

is also Lipschitz

on X , so that one may

to obtain a scalar majorant

(4.16) , and (4.17). QED.

The choice Y = [fl'f'(y)]-1 now gives a metric theorem which allows direct com-

parison of Theorems 3.1 and 3.2.
Theorem 4.1. £

(4.20) h = BAn i-% ’

then K(Xp) c Xp for p such that

1 - V1-4h 1 + V1-4h
(4.21) h n : 0 i-_z—h___ n
and X < X .
5}
= -

o g—.

e

N R AL D 1



5 1
Proof: As y = m(xp) is the midpoint of xo, ly-xpl - w(xp) = p, and

one may take

(4.22) wlp) = Ap
by (4.11) and (4.18). Thus, if h < % , then inequality (4.12) may be solved to
give (4.21), and the conclusion follows from Lemma 4.1. QED.

In order to use Theorem 4.1 to compare the theorems of Kantorovich and Moore,

it is natural to take y = x‘O), Y = YO , where

(0))]—1

(4.23) Y = [£'(x y
(1) b
so that w = x , B = Bo, n = "O . Thus, for
(4.24) X(o) = [x(O) - 2n0e,x(0) + 2n0e] = Q ,
one has
(4.25) k(x{?) - 1, 20 (1-¥ F (X9 }{-e el

0
Corollary 4.1. Under the hypotheses of Theorem 3.1, if

[S
(4.26) By 7%+
then k(x (@) ¢ x'®
Proof: This follows immediately from Theorem 4.1, as ho = (A/x)h. QED.

Remark 4.1. As (4.26) requires that ho 2 % even if «x = A, Corollary 4.1

provides a comparison of Theorem 3.1 with Theorem 3.2 which is unfavorable to the

latter. Furthermore, this cannot be improved in general, as the following example

shows. In R , take f(x) = x2 - c2 for 0 < ¢ <1 and x(O) = 1. This gives
(1) 1 2 1 2

(4.27) X = 5(1 Ll i Mo ™ 3(1 -€),

from which X(O) = [c2,2 - €2]. As 80 = % and x = )\ = 2, it follows that

1 &
(4.28) ho-h-i(l-t i

®
and Theorem 3.1 guarantees the existence of the solution x = ¢ of f(x) = 0 in

(0
X ) for 0 < £ < 1. On the other hand, direct camputation with (4.25) yields

(0) 1 S 2 4 3 32 4
(4.29) K(X"77) = [- FERC e FFt + s 1
and it is easy to verify that K(X(O)) c X(O) if and only if % ol r2 < 1, that is,
1
Oiho:'&-.

A result more favorable to Moore's theorem may be obtained by making different
choices of y, Y, and X than those above. If the hypotheses of Theorem 3.1 are
satisfied, then the Newton sequence {x(k)\ generated by (3.17) is well defined,
as are the sequences of real numbers {nk}, {Bk}, (hk} satisfying the relationships




AT A 2 el Mg

(k+2) (k+1)
X - X If

’

(k*l))]—l I,

h

Al{
k+1 2 | , s T L

k= 0,1,2,... [6; 15, pp. 135-138). It is sasy to verify that
Ll

k+1 '

and thus

(4.31) 3 = [x(k) - 2!\ke i x(k) + ;‘nke] < .\'(0)

Theorem 4.2. If the hypotheses of Theorem 3.1 hold with
(4.32)

then there exists a positive integer k such that for y =

[fo(H)]-l,\mclms K(X“d)\ X(H

.

Proof: If (4.32) holds, then the numbers hk decrease rapidly with X

In fact, the recurrence relations (4.30) can be solved [3] to give

(4.33)

where
1 - V1-2h

.3 ) T e ——
14.34) tO 1 + v‘l*2h0 !

and 90 <1 if (4.32) holds. Thus, a positive integer k will exist

X
(4.35) hk SRSy

and the conclusion will follow from Theorem 4.1, as h = (\/x)hk < . D,
Remark 4.2. The condition (4.32) implies quadratic convergence of th Newton

(k) % * b 5 : : ,(0) )
} to x ; furthermore, x will be unique in X and a1 «-MpE zero
L

* -
of f in the sense that [f'(x )] * will exist [16]. The case h0 = 5 A

borderline situation, which corresponds to linear convergence of the New on sequence

sequence {x

’ . 1 i 4
with ratio = [6]. Consequently, if rapid convergence of the Newton seqiunrce to

the approximate solution y has been observed computationally, then it ¢ likely
that the value of hO corresponding to x(O)

that either Theorem 3.1 or 3.2 is applicable.

= y satisfies (4.26) immediately so

TN TSR

L e




5. Precision and sensitivity to simple zeros. on the assumption that h0
(0)

satisfies (4.26), it follows from Thereom 3.1 thet for y = x ;
. 1 - ¢1-2hO
(5.1) Ily -x | i ho no = po r

and, similarly, Theorem 4.1 gives, by (4.20) ,

g 1 - /ISR h,
(5.2) by - x|l < 2(A/K)ho N =P -
FF @ < h0 < k/4X, then it is evident that

(5.3) <P .

il
so that the Kantorovich theorem is of greater precision than the metric version
of Moore's theorem. However,
o

(5.4) Jim —
o

ho+ 0

=1'

so that the difference may be inconsequentiai for ho sufficiently small.
To compare sensitivity, suppose that x is a simple zero of f , and
(5.5) B' > e 1ML
Given Lipschitz constants «k,A 1in a sufficiently large region { containing x*,

one may take

* *

1 - %-B KHx(O)-x Il (0) *
(5.6) ho = T B B kllx ""-x |l

(1-B «llx " =x )

*
in Theorem 3.1, provided that Hx(o)-x*ﬂ < 1/B k [16]. From (5.6),
(5.7) BN, (A
- _* 1+2h o’ '
B x 0

*
which may be used as a measure of sensitivity. From Theorem 3.1, x will be

detected if

*
(5.8) 1x - <"1 < a3y,
; : €0y =, % 1 ; .
that is, if x e Ulx ,ol 3 )), while Corollary 4.1 requires that
. (0) * K
(5.9) ™ - %l <0 (F5) -
Thus, as
(5.10) "(%) 2 [ 3-/6
— =3 (S5o%) = o.es...

=10=
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*
the best radius of detection of x that can be guaranteed for the metric version
of Moore's theorem is about 62.5% of the corresponding value for the Xantorovich

theorem. The example of Remark 4.1 can also be used to show that this cannot be

L]
improved in general. As in Theorem 4.2, however, if ﬂx(o) - x I« o(%) , then
h0 < % , and there will exist a positive integer k such that
(k) * K
(5.11) ™™ ~ %'l = of & )
(k) . g (x) e %5
for «x belonging to the Newton sequence ({x }, and Moore's theoram with

v " x(k)' Y-y, - (f‘(x(k))l‘l, x(k) (
L ]
tect x . The number of iterations required to obtain |Ix

x(k) - 2nko, x(k) + 2n,e)l = X will de-

(k) _ x.ll < (‘(%) is

shown in Table 5.1 for various values of h_ .

(4]
hO k
0.41421 1
0.47648 2
0.49397 3
0.49848 4
0.49962
0.49990 G
0.49997 7
0.49999 8

Table 5.1.

Iterations Required to Ensure h .

<1
k=~ 4

)]




6. Computational complexity. The computer program [9] for the implementatjon of

the Kantorovich theorem has been adapted to apply Moore's theorem for the choices
of y, Y, and X indicated for Corollary 4.1, and, as an additional option, for
the choice

(6.1) Y = (' (x)))7)

recommended by Moore and Jones [13]. This program provides an experimental as well
as a theoretical basis for the comparison of the computational complexity of Theorem
3.1 with Theorem 3.2.

To make effective use of either theorem, software is needed for automatic dif-
ferentiation (7] and implementation of interval computation for arithmetic operations
and functions ordinarily encountered in FORTRAN expressions [17] . In addition, the
program for the Kantorovich theorem requires software for interval matrix inversion
(5; 11, pp. 32-39] as part of the painstaking calculations required to guarantee

that upper bounds B are obtained for the quantities indicated in (3.1), (3.2),

(Ko
and (3.4) as resultg of 2nexact computations with machine numbers.

As the endpoints of intervals employed in actual calculations must be machine
numbers, directed rounding is used after each operation to preserve the inclusion
relationship. For this and other reasons [11], instead of the exact interval exten-
sion G of a continuous function g , a computed extension G is obtained, which
has the property that G(X) > G(X) for all X . Thus, [G(X)| > |G(X)| and
G(X) ¢ X implies G(X) ¢ X , so that rigorous conclusions can be drawn on the basis
of interval calculations with computed extensions. In what follows, it will be
convenient to identify a machine (or real) number =z with the degencrate nteaval
z = [z,2]).

The calculation of B for the Kantorovich theorem are fairly straight-

0'"o
forward applications of interval analysis. The Lipschitz constant «, however, will

be obtained from a bound for the second derivative

2%, (x)
(6.2) £"(x) = 3% . 0% '
j K |
|
which will be called the Hessian of f . For a real bilinear operator ¢ = (qiik)
in R: » ‘
n n
(6.3) hoh = max figxlh < max )  } |qijk| = ulQ) ,
I xll =1 (1) 3=1 k=1

with a similar expression for lQI if the elements of @ are intervals. Thus,

=]3e

e ——————
. : Sl i il s i i " a i M




a machine number x such that
n n
(6.4) KZuE" X)) =max  J o |Fy. 0],
(1) 3=1 x=1 ]

where F" is the computed extension of f", will be a Lipschitz constant for

€' on X ; as

(6.5) k > max [f£"(x)Il.
xeX

The essential interval operations to implement the Kantorovich theorem will
now be listed, it being assumed that x(O) = [x(o),x(O)] is an exact machinc
vector:

=,.(0) /
K1. F(x ~°) is evaluated.
0)

K2. The interval Jacobian E'(x( ) is calculated.
(0))]-1

K3. Y o [F'(x is obtained by interval matrix inversion of

0
F'(x(O)).
K4. Bo;l|§0| 3.N[f'(x0)]-1H is obtained by interval arithmetic. using (4.8).
= _(0) = () : ; J ; s g
KS. W= x - YOF(x ) is computed using interval arithmetic, so that
x(l) ¢ W for the exact Newton point.
(0) (1) (0) ; ; Yilencly
K6. "o > |x -wl > lx - x 'l is obtained from (4.4) by intorval
arithmetic.
S (0) (0) : S e z
K7. X o [x - 2ne, X + 2njel is constructed, usinginterval ax timetic.

K8. F'(X) is evaluated to obtain
K9. F" (X) by differentiation.

K10. « > p(F"(X)) > max [£"(x)l is obtained from (6.4) by intcria . ithmetic.
xeX
K11. ho 3_|B0Kn0| is calculated, using interval arithmetic.

After the machine number h0 has been obtained in this way, it is checked

versus the machine number % to see if (3.5) holds to complete the au om tion of
Theorem 3.1.

In the case of the Moore theorem, interval matrix inversion is avoidoa by
evaluating f'(x(o)) approximately as a real matrix, say in double proc coon, and
then inverting the result carefully to obtain a real matrix Y which i3 the inverse
of some matrix. (A failure of matrix inversion here or in K3 results in in exit
from the program with an appropriate error indication.) The interval computations
required for Moore's theorem with y = x(O) are:

Ml. F() is evaluated.

M2. Yy = Yﬁ(y) is computed using interval arithmetic; one has w w .

M3. n> Iﬁl is obtained from (4.4) by interval arithmetic.




Md. X o [y = 2ne, y + 2ne]l 1is constructed by interval arithmetic .

M5. F'(X) is evaluated.

M6. K(X) > W + 2n{I - YF'(X))[-e,e] is constructed by interval arithmetic.

These calculations result in the intervals X = [a,b], E(i) = [c,d], where
the components of the vectors a,b,c,d are all machine numbers. The verification
of K(X) ¢ X thus depends on checking the 2n inequalities
(6.6) ai;ci' di;bi e- X LB,y
between machine numbers.

Comparison of the lists of interval operations for the two theorems reveals
that M1 = K1, M2 < K5 (Y is a real matrix, so obtaining YF'(y) generally
requires fewer operations than for ?05’(x(0))). M3 = K6, M4 = K7, M5 = KB. This
commonality of subroutines made adaption of the original program to the new theorem
very easy. This leaves K2, K3, K4, K10, K11 for implementation of Theorem 3.1
as against M6 and the inversion of a real matrix for automation of Theorem 3.2.
In particular, K3 (interval matrix inversion) is tedious, and K9 (Hessian eval-
uation) requires % n2(n+1) differentiations and interval evaluations, while M6
is a simple interval matrix-vector multiplication.

It follows that the application of Theorem 3.2 is less complex by far than the
use of Theorem 3.1. At least for good approximations vy = x(o) to x', there is
no significant difference in precision or sensitivity to offset this advantage of
Moore's theorem.

A comment is in order on the choice (6.1) for Y . For X = Xﬂ '

(6.7) Im(F* (X)) = F*(X )] = = wF' (X)) ,
P P 2 p
and from (4.16) and (4.17),
(6.8) w(F'(Xp)) < Aw(xo) = 2\p .
Thus, one may take w(p) = Ap in Lemma 4.1, which gives Theorem 4.1 with
(6.9) B> [m(F'(xp))]-lll ,on > eyl = IYE(N .

I

Here, however, p is chosen first, and (4.21) must hold if h = BAn <
Computationally, this method differs from the above in that M3 and M4 are
eliminated, M5 follows the choice of x0 p m(F'(xD)) is then evaluated and
inverted to obtain Y and then M1, M2, and M6 with 2n = p complete the

computation. There is thus no essential difference in complexity.

-14-
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7. A numerical example. An actual camparison of computational efficiency was

obtained by applying the computer program (9], modified to include the implementa-

tion of Moore's theorem, to the quadratic system

9
(7.1) x; -ax, '21 aijxj w 3o @ LR s P
with )
3 ti(l-t?)zw.
s e DR (R
2.2 o' ¢ R £, +¢ !
i j

where ti’wi' i=1,2,...,9, are respectively the nodes and weights of the
Gaussian integration rule of order 17 on the interval 0 < t <1 [10, p. 288].

The system (7.1) was constructed as a discrete approximation to the nonlinear

integral equation

1
3a 1 ()=t")
(7.3) x(s) =1 + W x(s)of - e x(t)dt, 0£8<1l,
which is a case of the H-equation of Chandrasekhar [1, p. 105]. The value of
a considered was a = 0.7, and the initial approximation vy = x(o) = e gave
(7.4) X = [0.3405052e, 1.659494%].

(Directed rounding is used in the conversion of intervals from binary to decimal;
hence, the decimal interval X given by (7.4) contains the binary interval stored
in the computer.)

The program for the Kantorovich theorem computed

(7.5) h = 0.700800 > & ,
0 2 * * * *
and thus failed to detect the existence of a solution x = (xl,xz,...,xg) of

(7.1) in X. A total of 21.4652 UNIVAC 1110 time units were required, of which
4.7436 were expended for interval matrix inversion (K3 and K4), and 12.1394 were
required for the evaluation of the Hessian (K9 and K10).

The program for the Moore theorem, on the other hand, required only a total of
5.4120 time units, and gave K(X) ¢ X , thus guaranteeing the existence of a solu-
tion x. ¢ K(X) . The components of K(X) = [c,d] are given in Table 7.1.

In this simple example, the value of h0 has not been overestimated badly,
as the Hessian is constant, and all its nonzero elements have the same sign. For
bilinear operators Q of this type, u(Q) =|(QI. Thus, the program based on
Moore's theorem provides more information in this case, as well as showing the
expected decrease in execution time. For systems with nonconstant Hessians, the

advantage in speed of Theorem 3.2 should be even greater than the 4 to 1 advantage

observed here. 1In addition, the flexibility of being able to use .ntervals other

]S




i ci d1

1 1.0042228 1.0606792
2 1.0135268 1.1943671
3 1.0223478 1.3211143
4 1.0293528 1.4217681
9 1.0344997 1.4957230
6 1.0381216 1.5477668
7 1.0405689 1.5829316
8 1.0421079 1.6050443
9 1.0429109 1.6165838

Table 7.1. The Interval K(X) = [c,d).

than balls and the componentwise error bounds furnished by intervals may be
of significant advantage in practical computation.

The Author wishes to acknowledge the assistance of Julia H. Gray,
S. T. Jones, and C. T. Kelley with this example, which arose in an investi-

gation completely unrelated to the subject of this paper.
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Abstract (continued)

only a slight edge in sensitivity and precision, while Moore's theorem requires
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